Published on in Vol 11 (2023)

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/45405, first published .

Journals

  1. Anmella G, Mas A, Sanabra M, Valenzuela-Pascual C, Valentí M, Pacchiarotti I, Benabarre A, Grande I, De Prisco M, Oliva V, Fico G, Giménez-Palomo A, Bastidas A, Agasi I, Young A, Garriga M, Corponi F, Li B, de Looff P, Vieta E, Hidalgo-Mazzei D. Electrodermal activity in bipolar disorder: Differences between mood episodes and clinical remission using a wearable device in a real-world clinical setting. Journal of Affective Disorders 2024;345:43 View
  2. Corponi F, Li B, Anmella G, Mas A, Pacchiarotti I, Valentí M, Grande I, Benabarre A, Garriga M, Vieta E, Lawrie S, Whalley H, Hidalgo-Mazzei D, Vergari A. Automated mood disorder symptoms monitoring from multivariate time-series sensory data: getting the full picture beyond a single number. Translational Psychiatry 2024;14(1) View
  3. Valenzuela‐Pascual C, Mas A, Borràs R, Anmella G, Sanabra M, González‐Campos M, Valentí M, Pacchiarotti I, Benabarre A, Grande I, De Prisco M, Oliva V, Bastidas A, Agasi I, Young A, Garriga M, Murru A, Corponi F, Li B, de Looff P, Vieta E, Hidalgo‐Mazzei D. Sleep–wake variations of electrodermal activity in bipolar disorder. Acta Psychiatrica Scandinavica 2024 View
  4. Stolfi F, Abreu H, Sinella R, Nembrini S, Centonze S, Landra V, Brasso C, Cappellano G, Rocca P, Chiocchetti A. Omics approaches open new horizons in major depressive disorder: from biomarkers to precision medicine. Frontiers in Psychiatry 2024;15 View
  5. Corponi F, Li B, Anmella G, Valenzuela-Pascual C, Mas A, Pacchiarotti I, Valentí M, Grande I, Benabarre A, Garriga M, Vieta E, Young A, Lawrie S, Whalley H, Hidalgo-Mazzei D, Vergari A. Wearable Data From Subjects Playing Super Mario, Taking University Exams, or Performing Physical Exercise Help Detect Acute Mood Disorder Episodes via Self-Supervised Learning: Prospective, Exploratory, Observational Study. JMIR mHealth and uHealth 2024;12:e55094 View
  6. Romão J, Melo A, André R, Novais F. Machine Learning as a Tool to Find New Pharmacological Targets in Mood Disorders: A Systematic Review. Current Treatment Options in Psychiatry 2024;11(3):241 View
  7. Rykov Y, Ng K, Patterson M, Gangwar B, Kandiah N. Predicting the severity of mood and neuropsychiatric symptoms from digital biomarkers using wearable physiological data and deep learning. Computers in Biology and Medicine 2024;180:108959 View
  8. Anmella G, Corponi F, Li B, Mas A, Garriga M, Sanabra M, Pacchiarotti I, Valentí M, Grande I, Benabarre A, Giménez-Palomo A, Agasi I, Bastidas A, Cavero M, Bioque M, García-Rizo C, Madero S, Arbelo N, Murru A, Amoretti S, Martínez-Aran A, Ruiz V, Rivas Y, Fico G, De Prisco M, Oliva V, Solanes A, Radua J, Samalin L, Young A, Vergari A, Vieta E, Hidalgo-Mazzei D. Identifying digital biomarkers of illness activity and treatment response in bipolar disorder with a novel wearable device (TIMEBASE): protocol for a pragmatic observational clinical study. BJPsych Open 2024;10(5) View
  9. dos Santos M, Heckler W, Bavaresco R, Barbosa J. Machine learning applied to digital phenotyping: A systematic literature review and taxonomy. Computers in Human Behavior 2024;161:108422 View
  10. Corponi F, Li B, Anmella G, Valenzuela-Pascual C, Pacchiarotti I, Valentí M, Grande I, Benabarre A, Garriga M, Vieta E, Lawrie S, Whalley H, Hidalgo-Mazzei D, Vergari A. A Bayesian analysis of heart rate variability changes over acute episodes of bipolar disorder. npj Mental Health Research 2024;3(1) View
  11. Lipschitz J, Lin S, Saghafian S, Pike C, Burdick K. Digital phenotyping in bipolar disorder: Using longitudinal Fitbit data and personalized machine learning to predict mood symptomatology. Acta Psychiatrica Scandinavica 2024 View