Published on in Vol 11 (2023)
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/45405, first published
.

Journals
- Anmella G, Mas A, Sanabra M, Valenzuela-Pascual C, Valentí M, Pacchiarotti I, Benabarre A, Grande I, De Prisco M, Oliva V, Fico G, Giménez-Palomo A, Bastidas A, Agasi I, Young A, Garriga M, Corponi F, Li B, de Looff P, Vieta E, Hidalgo-Mazzei D. Electrodermal activity in bipolar disorder: Differences between mood episodes and clinical remission using a wearable device in a real-world clinical setting. Journal of Affective Disorders 2024;345:43 View
- Corponi F, Li B, Anmella G, Mas A, Pacchiarotti I, Valentí M, Grande I, Benabarre A, Garriga M, Vieta E, Lawrie S, Whalley H, Hidalgo-Mazzei D, Vergari A. Automated mood disorder symptoms monitoring from multivariate time-series sensory data: getting the full picture beyond a single number. Translational Psychiatry 2024;14(1) View
- Valenzuela‐Pascual C, Mas A, Borràs R, Anmella G, Sanabra M, González‐Campos M, Valentí M, Pacchiarotti I, Benabarre A, Grande I, De Prisco M, Oliva V, Bastidas A, Agasi I, Young A, Garriga M, Murru A, Corponi F, Li B, de Looff P, Vieta E, Hidalgo‐Mazzei D. Sleep–wake variations of electrodermal activity in bipolar disorder. Acta Psychiatrica Scandinavica 2025;151(3):412 View
- Stolfi F, Abreu H, Sinella R, Nembrini S, Centonze S, Landra V, Brasso C, Cappellano G, Rocca P, Chiocchetti A. Omics approaches open new horizons in major depressive disorder: from biomarkers to precision medicine. Frontiers in Psychiatry 2024;15 View
- Corponi F, Li B, Anmella G, Valenzuela-Pascual C, Mas A, Pacchiarotti I, Valentí M, Grande I, Benabarre A, Garriga M, Vieta E, Young A, Lawrie S, Whalley H, Hidalgo-Mazzei D, Vergari A. Wearable Data From Subjects Playing Super Mario, Taking University Exams, or Performing Physical Exercise Help Detect Acute Mood Disorder Episodes via Self-Supervised Learning: Prospective, Exploratory, Observational Study. JMIR mHealth and uHealth 2024;12:e55094 View
- Romão J, Melo A, André R, Novais F. Machine Learning as a Tool to Find New Pharmacological Targets in Mood Disorders: A Systematic Review. Current Treatment Options in Psychiatry 2024;11(3):241 View
- Rykov Y, Ng K, Patterson M, Gangwar B, Kandiah N. Predicting the severity of mood and neuropsychiatric symptoms from digital biomarkers using wearable physiological data and deep learning. Computers in Biology and Medicine 2024;180:108959 View
- Anmella G, Corponi F, Li B, Mas A, Garriga M, Sanabra M, Pacchiarotti I, Valentí M, Grande I, Benabarre A, Giménez-Palomo A, Agasi I, Bastidas A, Cavero M, Bioque M, García-Rizo C, Madero S, Arbelo N, Murru A, Amoretti S, Martínez-Aran A, Ruiz V, Rivas Y, Fico G, De Prisco M, Oliva V, Solanes A, Radua J, Samalin L, Young A, Vergari A, Vieta E, Hidalgo-Mazzei D. Identifying digital biomarkers of illness activity and treatment response in bipolar disorder with a novel wearable device (TIMEBASE): protocol for a pragmatic observational clinical study. BJPsych Open 2024;10(5) View
- dos Santos M, Heckler W, Bavaresco R, Barbosa J. Machine learning applied to digital phenotyping: A systematic literature review and taxonomy. Computers in Human Behavior 2024;161:108422 View
- Corponi F, Li B, Anmella G, Valenzuela-Pascual C, Pacchiarotti I, Valentí M, Grande I, Benabarre A, Garriga M, Vieta E, Lawrie S, Whalley H, Hidalgo-Mazzei D, Vergari A. A Bayesian analysis of heart rate variability changes over acute episodes of bipolar disorder. npj Mental Health Research 2024;3(1) View
- Lipschitz J, Lin S, Saghafian S, Pike C, Burdick K. Digital phenotyping in bipolar disorder: Using longitudinal Fitbit data and personalized machine learning to predict mood symptomatology. Acta Psychiatrica Scandinavica 2025;151(3):434 View
- Zhong R, Wu X, Chen J, Fang Y. Using Digital Phenotyping to Discriminate Unipolar Depression and Bipolar Disorder: Systematic Review. Journal of Medical Internet Research 2025;27:e72229 View
- De Prisco M, Oliva V, Fico G, Kjærstad H, Miskowiak K, Anmella G, Hidalgo-Mazzei D, Murru A, Vieta E, Radua J. Eye-tracking metrics during image viewing as possible biomarkers of cognitive alterations: A systematic review and meta-analysis in people with bipolar disorder. Journal of Affective Disorders 2025;384:69 View
- Krupa A. The importance of chronotype to mental health. Neuroscience Applied 2025;4:105521 View
- Dao J, Liu R, Solomon S, Solomon S. Using Electrooculography and Electrodermal Activity During a Cold Pressor Test to Identify Physiological Biomarkers of State Anxiety: Feature-Based Algorithm Development and Validation Study. JMIRx Med 2025;6:e69472 View
- Shen S, Qi W, Zeng J, Li S, Liu X, Zhu X, Dong C, Wang B, Shi Y, Yao J, Wang B, Lou X, Gu S, Li P, Wang J, Jiang G, Cao S. Passive Sensing for Mental Health Monitoring Using Machine Learning With Wearables and Smartphones: Scoping Review. Journal of Medical Internet Research 2025;27:e77066 View
- Wang P, Liu H, Shi Y, Liu A, Zhu Q, Albu I, Pacholec M, Cheng L, Sun X, Chi X. Harnessing Small‐Data Machine Learning for Transformative Mental Health Forecasting: Towards Precision Psychiatry With Personalised Digital Phenotyping. Med Research 2025;1(2):226 View
- Kim B, Jeong D, Choi Y, Choi Y, Kim H, Han K. Enhancing Mindfulness-Based Cognitive Therapy in a Virtual Reality: A Prospective Interventional Study. Scientific Reports 2025;15(1) View
- Jung H, Kim D, Lee I, Kim O, Lee S, Lee S, Chung U, Kim J, Kim S, Kim J, Shin A, Lee J. Key Features of Digital Phenotyping for Monitoring Mental Disorders: Systematic Review. Journal of Medical Internet Research 2025;27:e77331 View
- Cochran A, Vineyard J. The Dynamics of Mood in Bipolar Disorder: How Mathematical Models Help Phenotype Individuals, Forecast Mood, and Clarify Underlying Mechanisms. Current Psychiatry Reports 2025;27(12):687 View
Conference Proceedings
- Yokotani K, Takano M, Abe N. Proceedings of the International Conference on Advances in Social Networks Analysis and Mining. Abnormal behavior of following peers in an online game indicates bipolar disorder and manic/hypomanic episodes View
- Kim B, Chae M, Kim Y, Kong S, Kim Y, Jung T, Jeong J, Park S, Cho C, Yeom J, Lee T, Lee H, Lee H. 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Early Prediction of Depressive Episodes in Mood Disorders Using Circadian Rhythm Indicators and Deep Learning View
